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Figure 3: An example of superpixels on an image from Cityscapes dataset.

A Watershed tranform for Superpixel-mix

To mix two unlabeled images, we use masks generated from randomly sampled superpixels.
Superpixels are local clusters of visually similar pixels, typically delimited by pronounced
edges (as illustrated in Figure 3). Therefore, a group of pixels belonging to the same superpixel
are likely to correspond to the same object or a part of an object. There are various methods
for computing superpixels, including SEEDS [25], SLIC [1] or Watershed [19]. We opt to
use Watershed superpixels as their boundaries retain more salient object edges [20].

Watershed transformation and all its variants [4, 5, 6] are powerful techniques for image
segmentation. Watershed processes image gradients and outputs corresponding clusters
for each pixel. Since the watershed input is a gradient, we convert the input image from
RGB to Lab in order to compute the gradient maps. Then, on each channel, we evaluate
a morphological gradient and we average the three results. Similarly to [19], instead of
considering all the clusters of the watershed, we build a regular grid of points and consider
these points as markers for the watershed transform. This strategy allows us to control the
number of superpixels to reduce computational cost.

B From empirical risk to teacher student mixup

In this section, we show that the training loss of the teacher-student framework in combination
with superpixel-mix data augmentation is bounded by the accuracy of the teacher network
and the quality of the data augmentation. This result is essential since it is the first bound for
a teacher-student framework with consistency training. Different and effective variants of
teacher-students approaches with consistency training have emerged in recent literature, in
particular in semi-supervised learning [2, 3, 24] and self-supervised learning [8, 14, 15]. All
these approaches rely heavily on well-crafted agressive data augmentation strategies. This
result could be useful in this context as we proove how the quality of the teacher and the
quality of the data augmentation influence the accuracy of the student.
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Let D = {(x;,yi)} ~ P be the labelled dataset which follows the joint distribution P
and / be a loss between the target y and the prediction fg(x) of the DCNN fy. Typically,
in deep learning, the objective is to learn 6 that minimizes the expected risk defined by:
Rp(fo) = [1(fo(x),y)dP(x,y). As we do not have access to the distribution P, we optimize
the loss function that is formed by the empirical risk on D:

1 n
Ry (fo) = = Y 1(fowi). i) = [ 1o (x),9)dPs (x.9) 5)

i=1

3

where the the summation is converted back to the integral based on Pg(x,y) = %Zizl O(x=
Xi,y =Yi), as shown by [26].

Therefore, we optimize the parameters of the DCNN using the empirical risk. However,
the available training samples offer only a limited sparse coverage of the data distribution.
Aiming to achieve a better and denser coverage of the data distribution, Zhang et al. [26]
propose working instead with Diix = {(Xm,i,Ym,i) }i ~ 7?)‘}")’,‘ where x,, ;, and y,, ; are obtained
from pairs samples from D mixed together. The hypothesis’in [26] is that the mixing procedure
enables a better coverage and, consequently, approximation of the dataset distribution. Let
Pglix denote the discrete distribution of this augmented dataset. Zhang et al. [26] argue that
the naive estimate Py is merely a suboptimal approximation out of the many possible choices
towards approximating the true distribution P. Inspired by the vicinal risk minimization
principle [7] that estimates distributions around data samples, they argue that Pg‘ix is a better
approximation as it covers inter-sample areas through sample mixing, i.e., generating virtual
samples. Here, we build upon this finding from [26] and consider images computed with
Superpixel-mix also as virtual samples from the vicinal distribution of the original samples.
The vicinal risk to fit the teacher prediction on ’Pg’i" can then be defined as:

7Jmlx(fe g6) /l fo(x),80(x))dPE™(x,y). (6)

Therefore, our training loss for the overall framework is defined in detail as the following:

L(68) =Rp, (f9)+ﬁ73g“x (fo.80)- (7

As the loss [ is a norm that satisfies the triangle equality, we can prove that the training loss
L(6) is bounded by the following:

£(8) <2Rp(fo) +M(|PF™ =Pl +[[Ps = Pli1) + Rpmin (9) ®

where the four terms are linked to the true error, mixing distribution error, approximation
error and finally the teacher error.

Proof.
L(0) =2(Rp(fo) —Rp(fo)) +Rp, (fo) + pmxx(fe78¢) pmlx(fe) pmnx(fe) )

using the triangle inequality on the absolute value we have:

L(6) <2Rp(fg) + [Rp, (fo) —Rp(fo)l + \ﬁpgﬂx (fo) —Rp(fo)|+ |ﬁ7:5mix(f97g¢) —ﬁfpgix(feﬂ
(1)
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Let us first focus on the last term of the sum and use the integral absolute value inequality:

Ropgi (fo:20) ~ Rpgon o)) < [ 1(0(5)180() ~ 1(fo ) )| dPE™ (x:3) (12)

Then thanks to the triangle inequality on / we have

Ry (fo.20) ~ R (fo)] < [ 1020 ()APF(53) = Rpgis(9)  (13)

Now let us focus on the second term: It can be rewritten:

Ry (o) =Rp (fo)] = | [ 10£o().)(Ps(x.3) = P(x.3))ddy] (14)
using the integral absolute value inequality:
Ry (o) ~Rp(fo)] < [ 10fo(2).)[Ps.y) — Pa.y) dxdy (s)
Then we have:
Ry (o) = Rp(fo) | < M [ [P5(,y) ~ Px.y)ldndy (16)

with M = sup(I(fg(x),y)), hence we have:

Rp; (fo) —Rp(fo)| < M|[Ps P (17)

similarly we have:
[Rpis (fo) = Rp(fo)| < M[P3™ =Pl (18)
O

This implies that the quality of the DCNN is bounded by the accuracy of the teacher. It is
also bounded by how much the mixing strategy can sample the true distribution of the dataset.
Finally, the distribution of the training data with respect to the true data distribution also plays
an important role.

C Extra Experiments

This section adds some complementary results on the Cityscape-C experiments. Moreover, to
have a better understanding of Superpixel-mix, we conduct an ablation study on its parameters.
We also complete the SSL experiments by adding results to the Pascal dataset.

C.1 Complement Cityscapes-C

In semantic segmentation, the DCNN must be reliable to distributional shift uncertainty. To
check that, we generate Cityscapes-C dataset based on the code of Hendrycks et al. [16]. Note
that Cityscapes-C is composed of 16 types of pertubutions. Here is the list of all perturbations:
Gaussian noise, shot noise, impulse noise, defocus blur, frosted, glass blur, motion blur, zoom
blur, snow, frost, fog, brightness, contrast, elastic, pixelate, and JPEG. In addition, each type
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comprises five levels of severity. Playing with these five levels is essential since we can check
how an algorithm evolves with the severity.

In Figure 4 we illustrate the mIoU of different approaches for the different levels of noise.
We can see that Superpixel-mix tends to be resistant to high level of noise, while except for
Deep Ensembles, competitors have difficulties. This property is interesting since it shows that
Superpixel-mix is more reliable even in highly uncertain environments.

60 -
50 -
40 -
Method
g mm MCP
5 30- B Deep Ensembles
S = MIMO
B cutmix
B watershedmix

20 -

10 -

skew intensitv

Figure 4: Results on Cityscapes-C dataset’s mIoU for the different level of noise intensity.

C.2 Ablation studies on Superpixels

Our algorithm has two parameters to set: the number of superpixels, and the proportion of
selected superpixels used as masks for mixing. In this section we study the impact of the
choice of these parameters over the peformance downstream. To this end, we conduct an
ablation on Cityscapes over the same split of 744 images.

Our first study is related to the number of superpixels in Superpixel-mix and report results
in Table 5. We can see that the performance increases with the number of superpixels up
to 200. After this point, the mIoU score decreases. The number of superpixels is directly
linked to their size. It is also connected the number of salient edges that will be kept from the
original images. Hence, we can deduce that most of the true edges are discarded in the case
of a small number of superpixels, leading to low performances. While in the case where we
have a high number of superpixels, we might have an over-segmentation that likely leads to a
high granularity non-informative masks that prevent learning representations for objects and
object parts. In such cases, performance is lower.

Our second study is linked to the proportion of selected superpixels. The results of this
survey are in Table 6. We can see that the performance is stable across the range of different
values.
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Nb. superpixels
mloU

20 50 100 200 500 1000
63.81 % 64.47% 65.16% 650% 64.16% 64.2%

Table 5: Ablation study results on the number of superpixels on Cityscapes dataset. All
DCNNs are trained on the same split of 1/7 image set under the same conditions.

Proportion 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Performance (mIoU) | 65.59 % 65.54% 65.43% 65.0% 6529% 65.63% 64.9% 6559 6541

Table 6: Ablation study results on proportion of chosen superpixels on Cityscapes dataset.
All DCNNSs are trained on the same split of 1/7 image set under the same conditions.

C.3 Semi-supervised experiments on Pascal

We evaluate our method for semi-supervised semantic segmentation on the Pascal VOC 2012
dataset [11]. We compare against top existing methods, following the common protocol from
prior works [13, 17], i.e., four sets of labeled data: 1/100 (106 images), 1/50 (212 images),
1/20 (529 images), 1/8 (1323 images). We report results in Table 7. All methods use the same
training data split', however, in contrast with prior works that report results only from a single
training run, we conduct six different runs to assess the stability of our approach and report
mean mloU scores and standard deviation.

Labeled samples 1/100 (106) 1/50 (212) 1/20 (529) 1/8 (1323)
Adversarial [17] - 57.2% 64.7% 69.5%
s4GAN [21] - 63.3% 67.2% 71.4%
Cutout [10] 48.73% 58.26% 64.37% 66.79%
Cutmix [13]* 57,01% 65,99% 68,3% 71,2%
Classmix [22] 54.18% 66.15% 67.77% 71.00%
DMTJ12] 61.6% 65.5% 69.3% 70.7%
Baseline(*) 42.47% 55.69% 61.36% 67.14%

Superpixel-mix (ours)  57,69% = 0,53 (1 15.22%)  66,73% + 0,54 (1 11.04%) 69.87% = 0,39 (1 8.51%) 72,04% = 0,40 ( 4.9%)

Table 7: Performance (mIoU) on Pascal VOC 2012 [11] on the validation set, which is

computed over official split used by [13]. For Superpixel-mix we report scores averaged over
six different runs.

C.4 Semi-supervised experiments on ISIC 2017

We evaluate our method for semi-supervised semantic segmentation on the ISIC skin lesion
segmentation dataset [9]. We compare ours against the top existing methods, following the
common protocol from prior works [13, 17]. We use 50 out of the 2000 training images and
scaled them to 248 x 248. Then we apply a random crop of 224 x 224 with random flips and
rotations, and uniform scaling in the range from 0.9 to 1.1. We report results in Table 8. The
results are averaged on 5 different splits. For this dataset, similarly to [13, 17, 18], we use
DenseUNet-161 pretrained on Imagenet.

"https://github.com/Britefury/cutmix-semisup-seg/tree/master/data/splits/
pascal_aug
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Labeled samples (50)

Self ensemble [18] 75.31%
Cutout [10] 68.76%
Cutmix [13] 74.57%
Baseline(*) 67.64%

Superpixel-mix (ours) 74.53% =+ 1,23 (1 6.89%)

Table 8: Performance (mloU) on ISIC skin lesion segmentation dataset [9] on the validation
set. The results are averaged over 5 splits.

D Novel dataset Out of Context Cityscapes
(OC-Cityscapes)

In Figure 5, we illustrate a few example images from the contextual free Cityscape dataset
used in the unbiaising DCNN experiment. To build this dataset, we replace the pavements and
roads with natural landscapes such as sea, forest, desert background. These extreme settings
allow to better identify and assess potential contextual biases of semantic segmentation
models. The dataset will be made publicly available after the anonymity period.
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Figure 5: Illustration of some images of OC-Cityscapes dataset

E Novel dataset Out of Context Cityscapes
(OC-Cityscapes)

In Figure 5, we illustrate a few example images from the contextual free Cityscape dataset
used in the unbiaising DCNN experiment. To build this dataset, we replace the pavements and
roads with natural landscapes such as sea, forest, desert background. These extreme settings
allow to better identify and assess potential contextual biases of semantic segmentation
models.
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F Implementation details

In this section, we provide the hyper-parameters that are used in the semantic-segmentation
experiments. Our code is implemented in PyTorch [23]. The code will be made publicly
available after the anonymity period.

Hyper-parameter | StreetHazards | Cityscape | ISIC 2017
Architecture ‘ Deeplab v3+ ‘ Deeplab v3+ ‘ DenseUNet-161
output stride ‘ 16 8 -
learning rate ‘ 0.1 ‘ 0.1 ‘ 0.1

batch size ‘ 4 ‘ 16 ‘ 8
number of train epochs ‘ 25 ‘ 25 ‘ 25
weight decay ‘ 0.0001 ‘ 0.0001 ‘ 0.0001
SyncEnsemble BN ‘ False ‘ False ‘ False
random crop of training images ‘ None ‘ 768 ‘ 224

Table 9: Hyper-parameter configuration used in the fully supervised semantic segmen-
tation experiments .

Hyper-parameter | Cityscape | Pascal
Architecture | Deeplab v2 | Deeplab v2
output stride ‘ 16 ‘ 16
learning rate ‘ 2.5¢e-4 ‘ 2.5¢e-4
batch size ‘ 2 ‘ 5
number of training iteration ‘ 40000 ‘ 40000
weight decay ‘ Se-4 ‘ Se-4
SyncEnsemble BN ‘ True ‘ True

Table 10: Hyper-parameter configuration used in the semi supervised semantic seg-
mentation experiments .
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